
An Update from Flatland

For more than a decade after the discovery of the unique
physical properties of graphene, two-dimensional (2D)
materials have been attracting the attention of the

nanoscale research community and beyond. This continuing
interest is fueled by frequent reports of the discovery of new 2D
materials, with silicene, germanene, and phosphorene already
being intensely researched.1 More than 20 carbides and nitrides
of transition metals have also been added to the materials
flatland in the past 5 years,2 and 2D GaN grown under the
cover of graphene has recently been reported.3 However, 2D
boron (borophene) has attracted the most attention this year
(Figure 1), where the experimental synthesis4,5 followed
theoretical predictions.6 This case has thus demonstrated the
ability of modeling to guide the synthesis of new materials,
which is one of the primary goals of the Materials Genome
Initiative.7 Borophene has been shown experimentally and
theoretically to possess metallic properties,8 potentially offering
the thinnest metal sheets for applications such as interconnects,
electromagnetic shielding, and transparent conductors, where
2D metals can outperform all other materials.9 Realization of
these applications in addition to fundamental studies of other
charge transport phenomena such as superconductivity10 will
require the development of borophene transfer and processing
methods that minimize chemical and structural degradation.
Two-dimensional materials offer additional opportunities for

self-assembly and integration compared to zero-dimensional or
one-dimensional structures, such as nanocrystals or nanotubes.
Specifically, 2D heterostructures are attracting increasing
attention because they enable researchers to combine the
properties of individual 2D sheets and create layered assemblies
with unique hybrid properties, including property gradients.12

The race is now on to find practical applications afforded by
these 2D systems.
Recent conferences on 2D materials have offered an excellent

overview of ongoing efforts in the field and show that the 2D
world stretches far beyond graphene. Even at Graphene 2016 in
Genoa, Italy, about half of the talks were dedicated to materials
other than graphene. In recent years, there have been growing
numbers of 2D materials “beyond graphene” conferences,
reflecting the widespread interest in this field. One such recent
event was the International Conference on Electronic Materials
(IUMRS-ICEM 2016) held in Singapore in early July, 2016. At
a symposium on 2D materials and devices beyond graphene,
many speakers spoke about their recent work on 2D materials
including monolayer transition metal dichalcogenides (TMDs),
phosphorene, and borophene, and their potential applications
in electronics or optoelectronics.
Mark Hersam (Northwestern University) presented his

collaborative work with Nathan Guisinger at Argonne National
Laboratory on the synthesis of borophenes,4 and Lan Chen
(Chinese Academy of Sciences) showed that two types of 2D
boron sheets can be grown epitaxially on Ag(111) substrates.5

Wei Chen (National University of Singapore) talked about
interface engineering of 2D black phosphorus and its
photoreactivity to oxygen and water.13 Lain-Jong Li

(KAUST) presented impressive electron microscopy images
on chemical vapor deposition (CVD) grown vertical and lateral
heterostructures,14 which was the theme of several other
speakers.15,16 Electronic screening effects between organic
monolayers and 2D TMDs were also discussed.11

Defects and grain boundaries play important roles in
determining the properties of 2D materials, and several recent
experimental imaging and computational results were shared by
Jamie Warner (University of Oxford),17 Arkady Krasheninnikov
(Helmholtz Zentrum Dresden-Rossendorf),18 Andrew Wee
(National University of Singapore),19 Shiwei Wu (Fudan
University),20 and other speakers. Xiaodong Cui (University
of Hong Kong) explained the concept of spin-valley coupling in
2D TMDs,21 and other speakers talked about the electronic
structure, energy-level alignment, photoluminescence enhance-
ment, and interlayer energy transfer in 2D heterostructures.22,23

Other topics covered included mixed-dimensional hetero-
structures (Hersam),24 integration of 2D TMDs with high-k
dielectrics (Shijie Wang, Institute of Materials Research and
Engineering, ASTAR), graphene plasmonics (Tony Low,
University of Minnesota), and terahertz conductivity of 2D
materials (Elbert Chia, Nanyang Technological University).
Gianluca Fiori (Universita di Pisa) gave an overview on 2D
materials for electronic applications.
With the continuing advent of new 2D materials and the

nearly limitless possibilities for 2D heterostructures, it is evident
that flatland remains rife with opportunities for fundamental
research and discovery. Nevertheless, the long-term sustain-
ability of this field relies on the identification of practical
applications where 2D materials possess competitive advan-
tages. While much of the early effort in this regard has focused
on the utilization of 2D materials in common applications (e.g.,
transistors, sensors, photovoltaics, and batteries),25 it has
historically been challenging to supplant incumbent materials
in mature technologies. Consequently, it may prove to be more
productive to focus on applications that exploit the unique
properties in 2D materials that are not easily achievable in other
materials systems. For instance, the atomically thin nature of
2D materials leads to incomplete electrostatic screening, which
allows traditional two-terminal devices to be converted into
gate-tunable three-terminal devices with unprecedented
functionality. Emerging examples include gate-tunable diodes
with antiambipolar transfer curves26,27 and gate-tunable
memristors as foundational elements of neuromorphic
computing.28 ACS Nano looks forward to continuing to report
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the latest developments and to accelerate the advances in this

rapidly evolving field by highlighting the challenges and

opportunities in both the science and applications of 2D

materials.
Announcements. At the end of August in Grenoble,

France, at the European Conference on Surface Science

(ECOSS), the three winners of the 2016 ACS Nano

Lectureship Award received their plaques and gave intellec-

tually stimulating talks (Figure 2).
We are sad for the loss of Nobel Prize winning Chemist and

ACS Nano author, advisor, and supporter Dr. Ahmed H. Zewail

of Caltech, who passed away on August 2, 2016.
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Figure 1. Submonolayer PTCDA self-assembled on SL WSe2. (a) STM image of the PTCDA island on the WSe2/graphite interface with a
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Figure 2. ACS Nano Award Lecturers at the European Conference
on Surface Science in Grenoble, France, earlier this month. Left to
right: Prof. Christopher Murray of the University of Pennsylvania
(Americas), Prof. Lifeng Chi of Soochow University (Asia/Pacific),
and Prof. Andrea Ferrari of Cambridge University (Europe/Africa/
Middle East). Photo credit: Paul S. Weiss.
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