N- and O-doped mesoporous carbons derived from rice grains: efficient metal-free electrocatalysts for hydrazine oxidation†

Katherine Koh,‡ Yuying Meng,‡ Xiaoxin Huang,‡ Xiaolin Zou,‡ Manish Chhowalla‡ and Tewodros Asefa‡

Nitrogen and oxygen co-doped mesoporous carbons that can serve as metal-free electrocatalysts are synthesized via a novel synthetic route using milled rice as a precursor and colloidal silica as a template. The materials efficiently electrocatalyze the hydrazine oxidation reaction with only a small onset potential, while giving a high peak current density and showing good long-term stability.

The rapid rise in energy demands worldwide and the environmental issues caused by burning fossil fuels around the globe have been pressing the scientific community to find solutions to these challenging problems. Fuel cells constitute one of the most promising solutions to these problems because they have the ability to convert chemical energy from various sustainable sources (such as hydrogen generated by solar water electrolysis or ethanol derived from biomass hydrolysis) to electrical energy with reasonably high efficiency. However, for fuel cells to work effectively, they require advanced, efficient and sustainable catalysts that promote the half reactions involved at the electrodes in them. Among the many candidate catalysts developed so far for these purposes, heteroatom-doped carbon-based catalysts remain on the top of the list. This is because these metal-free materials have an ability to electrocatalyze some of the most important yet difficult reactions used in various fuel cells as well as water electrolyzers, such as the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER) and the hydrazine oxidation reaction (HOR).

It has been reported that these metal-free carbon catalysts can be synthesized from different synthetic precursors, for example, phenol and various polymers. However, using these precursors for making electrocatalysts not only is costly but also can generate toxic chemicals and is not in line with ongoing worldwide initiatives on the development of green and sustainable chemistry and materials. To address this issue, biomass, which is relatively inexpensive, abundant and renewable, is increasingly considered as precursor to make such metal-free catalysts. In fact, many previous studies in this area have shown that various carbon materials can be derived from biomaterials, such as peanut hulls, grass, soy milk, etc., using various synthetic methods. Moreover, some of these biomass-derived carbon materials have been reported to have comparable catalytic activity to those derived from synthetic precursors. Hence, research efforts have continued to find other natural, renewable precursors as well as facile synthetic routes that can convert such raw materials or biomass wastes to efficient carbon-based catalysts.

One of the simplest synthetic approaches applied to synthesize carbon nanomaterials is a low temperature hydrothermal carbonization (HTC). This synthetic method generally produces carbon materials possessing an amorphous structure and a high density of oxygen-based functional groups. However, the method on its own is often ineffective in producing materials with high surface area—something that is highly required for many applications, including electrocatalysis. To overcome this issue, we hypothesized that using sacrificial templates along with the carbon precursors during the HTC and pyrolysis processes can lead to carbon materials with highly porous structures, and thereby better electrocatalytic properties. While hard templates have been used to obtain porous structures and high surface areas in solid-state materials before, they have never been combined with HTC and pyrolysis synthetic steps and applied together on biomass to produce porous carbon materials that are otherwise difficult to make.

To this end, herein we demonstrate that HTC and pyrolysis can be successfully applied on milled rice grains (Fig. S1 in the ESI†) in the presence of colloidal silica templates to generate rice-derived heteroatom-doped mesoporous carbons (called RDMCs). The resulting metal-free, nanoporous carbons are found to efficiently electrocatalyze HOR. Rice grains contain starch (90%, dry basis) and some proteins (7%), and they can thus co-deliver the carbon...
Communication

Scheme 1  Schematic procedure employed to synthesize the rice-derived mesoporous carbon (RDMC) materials.

atoms and heteroatoms needed to make heteroatom-doped carbon electrocatalysts during carbonization. The synthesis of the materials is carried out through three major steps consisting of HTC (Step 1), high temperature pyrolysis (Step 2) and silica etching (Step 3), as illustrated in Scheme 1.

As described in detail in the ESI† section, the synthesis of the rice-derived mesoporous carbons (RDMCs) starts with a low temperature hydrothermal treatment of milled raw rice grains at 180 °C for 6 h. Caution! Autoclaves under hydrothermal conditions should be handled with extreme care and appropriate safety protocols. This is followed by an additional hydrothermal treatment of the materials in the presence of different amounts of colloidal silica templates at 180 °C for another 6 h. The carbonized rice-SiO$_2$ composite materials are then pyrolyzed at different high temperatures (600, 700, 800 or 900 °C). Finally, the silica templates in the carbonized products are removed using concentrated NaOH solution, in order to create nanopores in the carbon materials. By varying the pyrolysis temperatures as well as the amount of colloidal silica templates (0–2 g of colloidal silica per 1 g of rice grain), different RDMC materials, which are labeled RDMC-$T_x$-$d$, where $T$ and $x$ represent the final pyrolysis temperature and the amount of silica in g per 1 g of rice, respectively, are then obtained. Additionally, the following two control materials are synthesized. The first one, called RDC-HTC-1, is synthesized by applying only the two HTC treatment steps in the presence of 1 g of colloidal silica, followed by removal of silica templates (i.e., with no additional pyrolysis step). The second one, denoted RDC-800-Py-1, is synthesized by directly pyrolyzing a dried physical mixture of milled rice grains and colloidal silica (1:1 wt ratio) without the HTC treatment steps. The effects of these and other controlled synthetic conditions on the compositions, structures and electrocatalytic properties of the resulting materials toward the HOR are then investigated (see the ESI† for details).

The structures of RDMC-$T_x$ and control materials are first examined by N$_2$ porosimetry (Fig. S2, ESI†). The results show that the surface area of the materials depends on both the amount of colloidal silica and the pyrolysis temperature used to synthesize them. As the amount of colloidal silica is increased, the Brunauer–Emmett–Teller (BET) surface area of the RDMC-800-$x$ materials gradually increases. For example, the surface area of the materials increases from 14 m$^2$ g$^{-1}$ for RDC-800-0 (which is synthesized without using colloidal silica templates) to 343 m$^2$ g$^{-1}$ for RDC-800-0.5 (which is synthesized using a moderate amount or 0.5 g of colloidal silica templates for 1 g of milled rice grains), and then to 520 m$^2$ g$^{-1}$ for RDC-800-2 (which is synthesized using the highest amount of colloidal silica templates) (Table 1). The Barrett–Joyner–Halenda (BJH) pore size distribution reveals that the pore size of RDMC-800-$x$ (where $x$ > 0.5 g) is centered at ca. 12 nm, which is comparable to the size of colloidal silica used as templates for the synthesis of the materials. Note that RDC-800-0, which is synthesized without colloidal silica, is almost non-porous. The characterization results of the other relevant control materials are shown and compiled in Fig. S3–S5 and Tables S1 and S2 (ESI†).

On the other hand, as the pyrolysis temperature increases, the BET surface area of the carbon materials decreases. For example, the surface area is 686 m$^2$ g$^{-1}$ for RDC-600-1, but decreases to 343 m$^2$ g$^{-1}$ for RDC-900-1 (Table 1, entries 5–7). This trend is similar to other carbon materials synthesized from other precursors by pyrolysis and that are reported before. The decrease in surface area at higher temperatures is likely the result of the higher degree of cross-linkages that the aliphatic and aromatic carbon atoms in the precursors undergo during carbonization at increasingly higher temperatures.

Interestingly, there is no measurable porosity in RDC-HTC-1 (one of the control materials synthesized, entry 8 in Table 1). This indicates that the starch in the rice grains undergoes only hydrolysis, dehydrogenation, and carbonization during the HT step, and the silica nanoparticles cannot enter into the matrices of the resulting carbon material under the relatively low temperature employed during the HT step. On the other hand, RDC-800-Py-1 is nanoporous, and has a BET surface area of 164 m$^2$ g$^{-1}$ (entry 9 in Table 1). Its surface area is, however, still lower than those of the materials synthesized by combining HTC and high temperature pyrolysis (e.g., entry 3 in Table 1).

These results are further corroborated by TEM, which also shows that the structure of the materials changes from bulky, non-porous to nanoporous as colloidal silica is used in their synthesis (Fig. 3). For example, TEM images of the control material RDC-HTC-1 show non-porous structures whereas those of RDC-800-Py-1 show porous structures (Fig. 3c and d). So, overall, the results above all indicate the importance of colloidal silica as templates and the HT and high temperature pyrolysis steps to produce carbon materials with desirable high surface area nanoporous structures from rice grains.

![Table 1  BET surface area, average BJH pore size, and pore volume of a series of RDMC-$T_x$ materials](image-url)

<table>
<thead>
<tr>
<th>Entry</th>
<th>$T$</th>
<th>$x$</th>
<th>BET surface area$^a$ (m$^2$ g$^{-1}$)</th>
<th>Average pore size$^b$ (nm)</th>
<th>Pore volume$^c$ (cm$^3$ g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>0</td>
<td>14</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>0.5</td>
<td>343</td>
<td>15.1</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>1</td>
<td>366</td>
<td>18.5</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>2</td>
<td>520</td>
<td>11.1</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>1</td>
<td>686</td>
<td>12.4</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>700</td>
<td>1</td>
<td>557</td>
<td>15.5</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>900</td>
<td>1</td>
<td>343</td>
<td>13.8</td>
<td>0.8</td>
</tr>
<tr>
<td>8$^c$</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9$^d$</td>
<td>800</td>
<td>1</td>
<td>164</td>
<td>11.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

$^a$ $T$ represents the pyrolysis temperature and $x$ represents the amount of colloidal silica (in g) per 1 g of milled rice grain. $b$ Measured by N$_2$ porosimetry. $c$ A control material, which is denoted as RDC-HTC-1. $d$ A control material, labeled RDC-800-Py-1.
have higher amounts of N/C and O/C ratios. Furthermore, at higher temperature pyrolysis, some N and O are also likely to remain in the samples in the form of silico-oxynitride.

The chemical states of the nitrogen and carbon moieties in the materials are probed using high-resolution XPS (Fig. S9, ESI†). The peak corresponding to N 1s is further deconvoluted into four different N dopant states, including pyridinic (398.7 eV), pyrrolic (400.3 eV), quaternary (401.2 eV) and pyridinic N+–O− (403.3 eV) species (Fig. S8c, ESI†). In all the RDMC-T-1 materials, although the pyridinic moieties are conspicuous, their amount gradually decreases as the pyrolysis temperature is increased. On the other hand, the amount of quaternary nitrogen increases as the pyrolysis temperature is increased from 600 to 700 °C, but then remains almost unchanged after 700 °C. The deconvolution of the XPS peak for C 1s for the series of RDMC-T-1 materials into three different states, corresponding to C–C (284.6 eV), C–O/C–N (286.1 eV) and C–O (287.5 eV), is also included (Fig. S8d, ESI†). The result shows that all RDMC-T-1 materials possess more C–C type groups than C–O/C–N and C–O type groups in their structures.

Cyclic voltammetry (CV) curves of HOR over the RDMC-T-x materials and the corresponding control samples from −0.6 V to 0.6 V (vs. SCE) at different scan rates for various hydrazine concentrations (Fig. 2 and Fig. S10–S18, ESI†) demonstrate that all the series of RDMC-800-x and RDMC-T-1 materials can effectively electrocatalyze HOR. Of all the materials, RDMC-800-1 shows the best catalytic activity with a relatively large negative onset potential of −0.34 V (vs. SCE) (or low overpotential), a large negative peak potential of −0.02 V (vs. SCE), and a high peak current density of 2.6 mA cm−2 in HOR of 50 mM hydrazine solution (Fig. 2a). The values obtained for RDMC-800-1 are also either comparable with or better than those obtained for other electrocatalysts, including 20 wt% Pt/C (Tables S3 and S4 and Fig. S16 in the ESI†).

The current density produced during HOR over the RDMC materials increases linearly with the concentration of hydrazine (Fig. 2a and Fig. S10e and f, ESI†). Moreover, kinetic studies show...
that increasing the electrochemical scan rates generates a more positive peak potential. The relationship between the peak current density and the square root of scan rate is linear, suggesting that the HOR over the materials involves a diffusion-controlled electrochemical process (Fig. 2b and Fig. S11c and f, ESI†). Additionally, no cathodic peak is observed during the whole reverse scans, indicating that the reaction is irreversible. This behavior is further corroborated by linear sweep voltammetry (LSV) using a rotating disk electrode (RDE) for RDMC-800-1 (Fig. S11, ESI†).

Next, the effects of surface area and pyrolysis temperature of the materials on the materials’ electrocatalytic activities were probed. As can be seen in Fig. 3, the materials synthesized using relatively more colloidal silica templates show better electrocatalytic activity, with more negative onset and/or peak potential and higher peak current density. For example, as the amount of colloidal silica (x) is increased from 0 to 0.5 and 1 g, the onset potential of the materials in HOR gets better or shifts to a more negative value (−0.16, −0.33, and −0.34, respectively). However, a further increase in the amount of silica, or concomitantly surface area, does not appear to improve the catalytic activity of the materials any more; for example, when x is increased from 1 to 2, the onset potential remains almost unchanged while the current density, in fact, slightly decreases (Fig. 2c and d and Fig. S17, ESI†).

On the other hand, when the pyrolysis temperature is increased from 600 to 800 °C, the materials’ electrocatalytic activity gradually improves (Fig. 3); however, when the pyrolysis temperature is increased from 800 to 900 °C, the materials’ electrocatalytic activity decreases. The former may have to do with the increase in the dopant-related defect sites (Fig. S6b, ESI†) and the higher density of certain heteroatom species favorable for the electrocatalytic reaction in the material, such as quaternary N-species (Fig. S8, ESI†). This is also why, we believe, RDMC-800-1 shows the best catalytic activity among the RDMC-T1 materials we have investigated (Fig. 2d). Notably also, the control materials, RDC-HTC-1 and RDMC-800-Py-1, show poor catalytic activity; this indirectly suggests that both HTC and high temperature pyrolysis are essential to make the highly active catalytic materials obtained here (Fig. S12, ESI†).

Next, the stability of the materials during electrocatalysis is evaluated (Fig. S17, ESI†). After 500 cycles, the current densities during HOR over RDMC-800-1 remain as much as the initial values (Fig. S17a, ESI†), indicating the stability of the material during catalysis. This is confirmed by chronoamperometry or i-t measurements (Fig. S17b, ESI†).

In conclusion, nitrogen and oxygen co-doped mesoporous carbons have been synthesized from milled rice grains by combining hydrothermal carbonization with high temperature pyrolysis in the presence of colloidal silica templates. The as-obtained RDMCs have been demonstrated to serve as metal-free electrocatalysts for HOR. Their electrocatalytic performances have been found to depend on the synthesis parameters, particularly the pyrolysis temperature and the amount of colloidal silica templates used to make them.

This work was financially supported by the US NSF (DMR-1508611).

Notes and references


