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ABSTRACT: Designing advanced electrocatalysts for hydrogen
evolution reaction is of far-reaching significance. Active sites and
conductivity play vital roles in such a process. Herein, we
demonstrate a heteronanostructure for hydrogen evolution
reaction, which consists of metallic 1T-MoS2 nanopatches
grown on the surface of flexible single-walled carbon nanotube
(1T-MoS2/SWNT) films. The simulated deformation charge
density of the interface shows that 0.924 electron can be
transferred from SWNT to 1T-MoS2, which weakens the
absorption energy of H atom on electron-doped 1T-MoS2,
resulting in superior electrocatalytic performance. The electron
doping effect via interface engineering renders this heteronanostructure material outstanding hydrogen evolution reaction (HER)
activity with initial overpotential as small as approximately 40 mV, a low Tafel slope of 36 mV/dec, 108 mV for 10 mA/cm2, and
excellent stability. We propose that such interface engineering could be widely used to develop new catalysts for energy
conversion application.

Because of its high energy density and environment-friendly
impact, hydrogen is advocated as an alternative energy

carrier in the future.1,2 Sustainable and efficient production of
hydrogen is a prerequisite for realization of the hydrogen
economy. Therefore, considerable efforts have been devoted to
designing HER electrocatalysts possessing a small overpotential
and low Tafel slope.3−18 As the most active and chemically
stable electrocatalyst for HER, platinum (Pt) suffers from high
cost in terms of upscaling; yet it is challenging to find an
alternative electrocatalyst to replace Pt. Fortunately, the
exploitation of MoS2 compounds as potential robust and
efficient catalysts for HER has opened a promising new path for
this field.5−8,18,19 Both theoretical and experimental research
has proved that increasing the number of metallic Mo edge sites
(unsaturated sulfur atoms) is a crucial factor to enhance HER
activity.6 Great efforts have been made concentrating on
improving the number of active edge sites through nano-
structuring such as a molecular MoS2 edge site mimic,
amorphous molybdenum sulfides, highly ordered double-gyroid
MoS2 bicontinuous network, MoS2 films with vertically aligned
layers, defect-rich MoS2 ultrathin nanosheets, MoS2 nanosheet
with strained sulfur vacancies in its basal planes, and so on.17−25

Metallic 1T-MoS2, different from the above semiconducting

2H-MoS2, possesses Mo−S octahedral coordination, through
rotating one of the S−Mo−S basal planes by 60° around the c-
axis from the trigonal prism 2H structure. Much research has
demonstrated that charge transfer kinetics in metallic 1T-MoS2
is also a key parameter to further improve HER perform-
ance.26−29 Theoretical calculations show that such 2H-1T
phase engineering endows the inert basal plane activation a
lowering of ΔGH at +0.18 eV for 1T from +1.6 eV for 2H, equal
to 2H-MoS2 edges on Au(111), known as one of the most
active catalysts for hydrogen evolution.30 Similar enhancements
in the HER kinetics through intergrating 2H-MoS2 nanostruc-
tures with a variety of conducting supports such as reduced
graphene oxide, carbon nanotubes, carbon cloths, and carbon
fibers have also been observed.31−35 Besides maximizing the
active sites at both edge and basal plane, phase engineering, and
intergrated 2H phase with conducting substrate, how to further
activate and optimize the MoS2 for hydrogen evolution is still
highly desirable. Given the typical ultrathin 2D geometric
features of MoS2, the electronic perturbations derived from the
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support markedly arise, offering an effective means to tailor the
catalytic performance.36,37 Can electron doping via interface
engineering then be used to further optimize the electro-
catalytic activity of 1T-MoS2? The construction of such 1T-
MoS2 heterostructure with an intimate interface still remains a
grand challenge due to the traditional lithium intercalation−
exfoliation method and stability of the as-obtained 1T
phase.38−41

On the basis of our previous works,42−44 here we first report
metallic 1T-MoS2 nanopatches with size of ∼5 nm in situ
bounded to single-walled carbon nanotube films (SWNT) via a
bottom-up solvothermal method. 1TMoS2/SWNT heterona-
nostructure triggered a spontaneous electron transfer between
the interface, which weakened the absorption energy of H atom
on electron-doped 1T-MoS2 and thus favors the HER kinetics,
dramatically boosting its intrinsic HER activity with a small
onset overpotential of ∼40 mV, Tafel slope of 36 mV/dec, 108
mV for 10 mA/cm2, and high durability. Our unique hybrid
nanoarchitecture demonstrates interface engineering-induced
electron doping is a promising approach for optimizing the
HER kinetics of 1T-MoS2, and this strategy is expected to
benefit the design of cheap and efficient HER electrocatalyst for
future clean energy generation.
Figure 1a,b shows a schematic illustration of the synthesis

procedure of the 1T-MoS2/SWNT hybrid samples. Typically,

the sample was prepared directly via facial solvothermal
method, where MoCl5 and excessive thioacetamide (TAA)
were used as precursors for growing 1T-MoS2 around the
SWNT films (see Figure S1). Notably, a comparison
experiment was also conducted under identical synthetic

conditions, resulting in totally different three-dimensional
(3D) aggregates of 1T-MoS2 particles (Figure S2). Thus, we
believe that the additional SWNT films can act as a useful
support for regulating the growth of loaded materials and
fabricating novel functional hybrids. The 1T-MoS2-coated
SWNT hybrids were characterized by means of scanning/
transmission electron microscopy (SEM/TEM), as shown in
Figure 1c,d (also see Figure S3). The microscopy observations
clearly revealed that the compact graphene-like small MoS2
nanopatches have been in situ grown around the surface of
SWNT. Excessive molar ratio of TAA to MoCl5 plays a vital
role for the formation of 1T-MoS2 structure due to the
ammonium ions’ intercalation, similar to our previous work
(also demonstrated by XRD patterns and Raman spectra in
Figure S4).44 Furthermore, electron energy loss spectroscopy
(EELS) mapping analyses (Figure 1e−h) were utilized to
illustrate the elemental distribution. Around the SWNT strand,
elements (Mo, S, and N) are also uniformly distributed.
X-ray photoelectron spectroscopy (XPS) was conducted to

characterize the chemical state of 1T-MoS2 on SWNT. The
binding energy of Mo 3d in 2H-MoS2 features two principal
peaks at around 229.5 and 232 eV that correspond to Mo4+

3d5/2 and Mo4+ 3d3/2 components, respectively. Deconvolution
of these peaks (Figure 2a) reveals that additional peaks relative

to the position of the 2H-MoS2 peaks are shifted to lower
binding energies. Besides, small peaks for the +6 valence state
arise. Similarly, down-shift of bonding energies also appears in
the S 2p1/2 and S 2p3/2 peaks as compared to doublet peaks of
2H-MoS2 (Figure 2b). The downshift in the peak position of
Mo 3d and S 2p peaks indicates that they originate from the 1T
phase, which is similar to our previous reports of ammonium
ion-intercalated MoS2.

43 The high-resolution XPS spectra of C
1s binding energy (Figure S5a) can be deconvoluted into two
peaks. The main peak at 284.6 eV belongs to sp2 graphite-like

Figure 1. Schematic illustration of the synthesis of 1T-MoS2/SWNT
heteronanostructure and morphology characterization. (a,b) Sche-
matic illustration of the solvothermal synthesis with SWNT film as
substrates for preparation of 1T-MoS2/SWNT hybrid. (c,d) Low and
high magnification TEM images of 1T-MoS2/SWNT hybrid, which
further reveal the hybrid structure where small MoS2 patches are
anchored intimately on the surface of SWNTs. (e−h) EELS elemental
mapping of 1T-MoS2/SWNT heteronanostructure clearly showing the
uniform distribution of molybdenum (red), sulfur (green), carbon
(azure), and nitrogen (yellow).

Figure 2. XPS spectra and atomic structural analysis of the 1T-MoS2/
SWNT heteronanostructure. XPS spectra of Mo 3d (a) and S 2p (b)
binding energies of as-prepared 1T-MoS2/SWNT. The curves are
deconvoluted by Gaussian fitting. (c) Typical HADDF-STEM images
of 1T-MoS2/SWNT, showing MoS2 nanopatches coated SWNT and
the obvious zigzag chain pattern of the Mo atoms. The inset magnified
image displays a Mo−Mo bond length of 2.75 Å, characteristic of the
distorted 1T structure. (d) Fourier transfers of the κ2-weighted EXAFS
oscillations of the as-prepared samples.
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carbon atoms, and the peak around 286.0 eV is assigned to the
carbon atom bound to the oxygen-containing group due to acid
treatment. Because of the oxygen group, SWNT possesses not
only a more favorable interaction with MoCl5 and TAA
molecules but also better wettability. The existence of
intercalated-ammonium ions is also demonstrated by N 1s
peak (Figure S5b), similar to our previous report.43 The
compositional analysis of XPS (Table S1) shows that the mass
fraction of 1T-MoS2 for the 1T-MoS2/SWNT sample is around
60%.
The distribution and the atomic arrangement of 1T-MoS2

nanopatches grown on SWNT were observed directly by the
high angle annular dark field image in a spherical aberration-
corrected scanning transmission electron microscope
(HAADF-STEM). Figure 2c shows that most of the MoS2
nanopatches tightly lay flat around the nanotube’s surface, and
some of them possess folded edges corresponding to the
different layers of MoS2 (number of layers = 1−3; see Figure
S6). The inset image in Figure 2c shows the high-resolution
STEM of grown MoS2 nanopatches, which reveals that these
small MoS2 patches are just about 5 nm with highly exposed
edges. Besides, MoS2 nanopatches exhibit zigzag chain patterns
with a Mo−Mo bond length of 2.75 Å, the characteristic of the
distorted 1T phase. X-ray absorption fine spectroscopy (XAFS)
at the Mo K-edge, including the extended X-ray absorption fine
structure (EXAFS) and X-ray absorption near-edge spectros-
copy (XANES), was used to probe the partial electronic and
the local geometric structures of the prepared samples, to
further confirm zigzag chain superlattice in 1T-MoS2/SWNT
and the interaction between 1T-MoS2 and SWNT in the
electronic/atomic level. Figure 2d shows that the substantial
changes in the local atomic structure can be confirmed by the
Fourier transform (FT) profiles in the real space (R-space).
The FT curves of 2H-MoS2 as two main peaks at 2.41 and 3.18
Å correspond to the nearest Mo−S and Mo−Mo bonds,
respectively. By contrast, the FT curves of 1T-MoS2 and 1T-
MoS2/SWNT show that the Mo−Mo peak shifts to lower value
as compared to 2H-MoS2, a significant downshift from 3.18 to
2.75 Å. It means that a much shorter bond length of Mo−Mo
exists in the 1T-MoS2/SWNT sample, agreeing with the STEM
result. Moreover, both peak intensities of the Mo−Mo and
Mo−S bonds are reduced remarkably. Such reduced Mo−Mo
bond length and coordination number of the Mo−Mo bond are
the typical characteristics of the 1T phase. Moreover, the
ultrasmall size of 1T-MoS2 further reduces the coordination
number. The nearest Mo−S bond length slightly becomes
shorter probably due to the defects caused by solvothermal
treatment or interface effect in the presence of the
heterojunction structure. These corresponding FT curves are
fitted via the ARTEMIS model to obtain the quantitative
parameters of the local structure near the element Mo.45 The
fitting results are summed in the supplement (Table S2 and
Figure S7).
Although a similar geometrical structure was revealed by the

EXAFS technique, the XANES spectrum of 1T-MoS2/SWNT
at Mo K-edge shows an obvious energy shift at the rising edge
with respect to that of pure 1T-MoS2, as shown in Figure 3a.
This XANES edge downshift is a typical indication that electron
transfer occurs from the SWNT to the 1T-MoS2 nanopatches.
Moreover, the position of the XPS C 1s line of 1T-MoS2/
SWNT is also upshifted by ∼0.35 eV as compared to the
pristine SWNT sample (Figure 3b). We propose that both
shifts in the 1T-MoS2/SWNT hybrid can be related to electron

transfer from the SWNT core to the 1T-MoS2 sheath.46 To
verify the proposed charge transfer between 1T-MoS2 fragment
and SWNT, we carried out the simulation of deformation
charge density. The interface of hydrogen-terminated 1T-MoS2
with 8 × 4 × 1 lattice and metallic (4, 4) SWNT with 1 × 1 × 4
lattice was considered by first-principle calculation. The
simulated deformation charge density of the interface is
shown in Figure 3c. It is noticeable that 1T-MoS2 can attain
an electron from SWNT, and the electron transfer mainly
occurs on the upper surface of 1T-MoS2 and on the whole
nanotube surface. The further Bader charge analysis indicates
that 0.924 electron can be transferred to the 1T-MoS2 fragment
from SWNT, which explains the above downshift in XANES of
Mo edge for 1T-MoS2/SWNT hybrids in contrast with the
pure 1T-MoS2 sample. Thus, we can conclude that such few-
nanoscale metallic 1T-MoS2 nanopatches were in situ grown on
a highly conducting SWNT surface, subsequently resulting in
electron doping in 1T-MoS2 nanopatches from SWNT support
via an intimate interface. Considering the electron transfer from
SWNT to 1T-MoS2 due to such strong electronic coupling at
the tight interface, we further provided first-principles
calculations based on density functional theory (DFT) to
probe into the adsorption behavior of hydrogen atom on
negatively charged 1T-MoS2 with zigzag edge (see Figure S8
and Table S3). According to previous theoretical calculations,47

two kinds of S atoms were studied in our case. Comparing the
adsorption energies, the H adsorption energy of negatively
charged zigzag-MoS2 reduces in contrast with that of pure 1T-
MoS2. The calculated adsorption energy and the S−H bond
length are summarized in Table S3. Our theoretical calculations
well authenticate that for electron-doped 1T-MoS2, the
adsorption capacity of H atom on its surface is weakened,
indicating that the following H recombination and release

Figure 3. Theoretical simulation and calculation of electron
transferring cross the interface. (a) XANES spectra at Mo K-edge of
1T-MoS2 and 1T-MoS2/SWNT. (b) XPS C 1s spectra of 1T-MoS2
and 1T-MoS2/SWNT. (c) Top (left) and side (right) views of the
deformation charge density of interface between 1T-MoS2 fragment
and SWNT, with an isovalue of 0.0002 e/bohr3. Yellow shape
represents that the area obtains electrons, while the blue shape
represents that the area loses electrons, respectively.
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process in the 1T-MoS2/SWNT heteronanostructure becomes
relatively easier than the pristine ones.
To demonstrate the advance of designed 1T-MoS2/SWNT

hybrids, we studied the electrocatalytic properties of the
samples. The HER measurements were performed via a three-
electrode setup in 0.5 M H2SO4 solution. All polarization (C−
V) curves are not rectified for iR loss here. The polarization
curves of different catalyst loading amounts and 1T-MoS2/
SWNT ratios were conducted in Figures S9 and S10. Figure 4a

shows the polarization curve with 1T-MoS2/SWNT hybrid
electrode. It demonstrates that the 1T-MoS2/SWNT electro-
catalyst possesses a low onset overpotential (η) of ∼40 mV
versus RHE (Figure S11), above which the HER current
density increases rapidly. The HER performances of
commercial Pt (20 wt % Pt/C) catalyst, 1T-MoS2, and
SWNT were also conducted in the same experimental setup.
The Pt/C catalyst exhibits negligible onset overpotential, which
is the best electrocatalyst. Bare 1T-MoS2 presents low HER
activity because of the relatively low conductivity and limited
exposed active sites of 3D aggregates of 1T-MoS2 particles. The
potential value at 10 mA/cm2 is frequently used as a typical
reference metric to evaluate the electrochemical catalytic
property.17 Our 1T-MoS2/SWNT electrocatalyst just needs
108 mV to reach 10 mA/cm2.
To understand the underlying mechanism of 1T-MoS2/

SWNT HER catalytic activity, Tafel plots produce a slope of

approximate 36 mV/decade (Figure 4b), which is nearing the
value of commercial Pt catalyst with approximately 30 mV/
decade. This indicates a possible Volmer−Heyrovsky reaction
path, which means that electrochemical hydrogen desorption is
the rate-limiting step.25 According to the above character-
izations, we suggest that the exceptionally low Tafel slope of
1T-MoS2/SWNT catalyst corresponding to the substantially
improved reaction kinetics can be attributed to the strong
chemical and electronic coupling at the interface, which was
demonstrated by the above theoretical calculations. It indicates
that the reduced H atom absorption energy in such a
heteronanostructure makes hydrogen desorption much easier.
Chemical coupling/interactions afforded a highly dispersed
growth of 1T-MoS2 nanopatches around SWNT surface
without aggregation. The high dispersion and small size of
1T-MoS2 around SWNT in turn endowed lots of accessible
active catalytic sites. Besides, the strong electrical coupling to
the SWNT in an interconnected conductive network provided
fast electron transfer from the electrodes to the metallic 1T-
MoS2 nanopatches. The rapid charge transfer from the
abundant active sites to the glassy-carbon electrodes could
also be characterized by electrochemical impedance spectros-
copy, which is carried out at η = 0.20 V vs RHE to study the
electrode kinetics under HER process, as shown in Figure 4c.
The 1T-MoS2/SWNT electrocatalyst exhibits substantially
lower charge transfer resistance (Rct) than that of bare
SWNT and 1T-MoS2, as shown in Figures S12 and S13. The
significantly reduced Rct afforded markedly faster HER kinetics
with the 1T-MoS2/SWNT hybrid catalyst. The intrinsic per-site
activity is a vital indicator for evaluating the electrocatalyst. The
electrochemical capacitance surface area measurements were
used to evaluate the active surface area of the electrocatalyst
(see Figure S14).48 The double-layer capacitance (Cdl) of our
as-obtained 1T-MoS2/SWNT sample is 230.9 mF/cm2, which
is nearly 45 times higher than the reported value of similar
molybdenum sulfide/N-doped CNT forest hybrid catalysts.32

The BET specific surface areas of 1T-MoS2/SWNT nano-
composites and bare MoS2 were conducted in Figure S15. The
BET specific surface areas of 1T-MoS2/SWNT nanocomposites
and bare MoS2 were 603.327 and 1.349 m

3/g, respectively. The
value of 1T-MoS2/SWNT is 447 times that of 1T-MoS2, which
is well consistent with the above Cdl value.
Meanwhile, catalytic durability is another important param-

eter for the HER catalyst. The catalytic stability of our 1T-
MoS2/SWNT catalyst was measured by continuous cyclic
voltammetry conducted from −0.20 to 0.10 V vs RHE with 50
mV/s sweep rate (Figure 4d). The chronoamperometry (j−t)
curve (see Figure S16) demonstrated the long-term stability of
1T-MoS2/SWNT composite. Even after a long period of 30 000
s, the degradation of current density can be ignored. Negligible
deterioration of cathodic current is observed after 3000 cycles,
indicating the excellent stability of the material. The good
chemical stability of 1T-MoS2/SWNT catalyst is also
demonstrated (see Figure S17), indicating that the HER
activity slightly deteriorates even after 6 months of storage in
air atmosphere. The TEM image (see Figure S18a) of the
sample after the durability test shows that the morphology of
1T-MoS2 nanopatches coated around SWNT presents
negligible alterations after a long period of cycles. The XPS
spectra (see Figure S18b,c) of the sample also present no
significant alteration in the valence state of Mo and S after the
30 000 s electrochemical process, which confirms the superior
stability of the 1T-MoS2/SWNT sample for long periods of

Figure 4. Electrocatalytic hydrogen evolution of different catalysts. (a)
Polarization curves of 1T-MoS2/SWNT heteronanostructure, pure 1T-
MoS2, pure SWNT, and a high-quality commercial Pt catalyst and (b)
Tafel plots of 1T-MoS2/SWNT hybrid and Pt catalyst. Sweep rate: 10
mV s−1. (c) Electrochemical impedance spectra of 1T-MoS2/SWNT
hybrid, 1T-MoS2, and SWNT at −0.20 V vs RHE from 100 kHz to
0.01 Hz. The inseted image shows zoom-out spectra. (d) Durability
test for the 1T-MoS2/SWNT electrocatalyst. (e) HER scheme for 1T-
MoS2/SWNT hybrid catalyst.
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electrochemical cycling. All of the above results prove that 1T-
MoS2/SWNT catalyst has superior HER activity and stability
that is expected to be a very promising electrocatalyst for
practical clean hydrogen production (see Table S4).
For better understanding, Figure 4e shows the HER scheme

for 1T-MoS2/SWNT heteronanostructure catalyst according to
the above analysis. The remarkable HER activity as well as the
high durability of the 1T-MoS2/SWNT catalyst with multiple
synergistic structure and electronic regulations can be ascribed
to the following four aspects: (i) the weakened H atom bond
energy in electron-doped 1T-MoS2 via interface engineering
makes the H recombination and release easier in the
electrochemical hydrogen evolution process; (ii) the metallic
characteristic of electron-doped 1T-MoS2 and SWNT affords a
rapid electron transport channel between the electrodes and
positive protons, facilitating HER kinetics process; (iii) the just
about 5 nm size of ultrasmall 1T-MoS2 nanopatches in which
edges and basal surface are catalytically active offers a
proliferated density of catalytic active sites; and (iv) 1T-MoS2
highly stabilized by interlayered NH4

+ and strongly interacted
with SWNT ensures its stability against long-term electro-
catalysis and aging. In general, collaborative optimization of 1T-
MoS2/SWNT heteronanostructure electrocatalyst by nano-
structuring, phase engineering, and interface engineering was
realized for one of the most excellent MoS2-based electro-
catalytic hydrogen evolution. Such electron doping via interface
engineering may pave a new path to improve the performance
of various catalysts.
In conclusion, electron doping of 1T-MoS2 by in situ forming

heteronanostructure has been shown to be an efficient new
route for improving its electrocatalytic activity. The induced
interfacial electron transfer in such system weakens the
absorption capacity of H atom on electron-doped 1T-MoS2,
thus promoting the HER kinetics. The heteronanostructure was
shown to be an excellent electrocatalyst for hydrogen evolution
reaction and displayed a small onset overpotential, low Tafel
slope, and high durability. The methodology of electron doping
via interface engineering could also be a general way of
improving conductivity in two-dimensional materials (tran-
sition metal dichalcogenides and oxides). Our work thus can be
extended to more materials beyond MoS2 and may have wide
implications for reactions beyond HER.
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