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Liquid Exfoliation of Layered Materials
Valeria Nicolosi, Manish Chhowalla, Mercouri G. Kanatzidis, Michael S. Strano, 

Jonathan N. Coleman*

Background: Since at least 400 C.E., when the Mayans fi rst used layered clays to make dyes, people 
have been harnessing the properties of layered materials. This gradually developed into scientifi c 
research, leading to the elucidation of the laminar structure of layered materials, detailed understand-
ing of their properties, and eventually experiments to exfoliate or delaminate them into individual, 
atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion 
of interest in two-dimensional materials.

Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional 
structures. The archetypal example is graphite, which consists of stacked graphene monolayers. How-
ever, there are many others: from MoS2 and layered clays to more exotic examples such as MoO3, GaTe, 
and Bi2Se3. These materials display a wide range of electronic, optical, mechanical, and electrochemi-
cal properties. Over the past decade, a number of methods have been developed to exfoliate layered 
materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-
ratio nanosheets with enormous surface area, which are ideal for applications that require surface 
activity. More importantly, however, the two-dimensional confi nement of electrons upon exfoliation 
leads to unprecedented optical and electrical properties.

Advances: An important advance has been the discovery that layered crystals can be exfoliated in 
liquids. There are a number of methods to do this that involve oxidation, ion intercalation/exchange, or 
surface passivation by solvents. However, all result in liquid dispersions containing large quantities of 
nanosheets. This brings considerable advantages: Liquid exfoliation allows the formation of thin fi lms 
and composites, is potentially scaleable, and may facilitate processing by using standard technologies 
such as reel-to-reel manufacturing.

Although much work has focused on liquid exfoliation of graphene, such processes have also 
been demonstrated for a host of other materials, including MoS2 and other related structures, lay-
ered oxides, and clays. The resultant liquid dispersions have 
been formed into fi lms, hybrids, and composites for a range 
of applications.

Outlook: There is little doubt that the main advances are in 
the future. Multifunctional composites based on metal and 
polymer matrices will be developed that will result in enhanced 
mechanical, electrical, and barrier properties. Applications 
in energy generation and storage will abound, with layered 
materials appearing as electrodes or active elements in devices 
such as displays, solar cells, and batteries. Particularly impor-
tant will be the use of MoS2 for water splitting and metal oxides 
as hydrogen evolution catalysts. In addition, two-dimensional 
materials will fi nd important roles in printed electronics as 
dielectrics, optoelectronic devices, and transistors. 

To achieve this, much needs to be done. Production rates 
need to be increased dramatically, the degree of exfoliation 
improved, and methods to control nanosheet properties devel-
oped. The range of layered materials that can be exfoliated 
must be expanded, even as methods for chemical modifi cation 
must be developed. Success in these areas will lead to a family 
of materials that will dominate nanomaterials science in the 
21st century.
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Liquid Exfoliation of Layered Materials
Valeria Nicolosi,1,2 Manish Chhowalla,3 Mercouri G. Kanatzidis,4

Michael S. Strano,5 Jonathan N. Coleman1*

Not all crystals form atomic bonds in three dimensions. Layered crystals, for instance, are those
that form strong chemical bonds in-plane but display weak out-of-plane bonding. This allows them
to be exfoliated into so-called nanosheets, which can be micrometers wide but less than a
nanometer thick. Such exfoliation leads to materials with extraordinary values of crystal surface
area, in excess of 1000 square meters per gram. This can result in dramatically enhanced surface
activity, leading to important applications, such as electrodes in supercapacitors or batteries.
Another result of exfoliation is quantum confinement of electrons in two dimensions, transforming
the electron band structure to yield new types of electronic and magnetic materials. Exfoliated
materials also have a range of applications in composites as molecularly thin barriers or as
reinforcing or conductive fillers. Here, we review exfoliation—especially in the liquid phase—as a
transformative process in material science, yielding new and exotic materials, which are radically
different from their bulk, layered counterparts.

In 1824, Thomas H.Webb heated amineral sim-
ilar to mica and, by means of thermal ex-
foliation, transformed it into what is today a

valuable commodity, with applications as an
ion exchange resin, an insulating material, and
a structural binder in cement. He named the
mineral “vermiculite” for its wormlike appear-
ance upon exfoliation (Fig. 1), from the Latin
vermiculare meaning “to breed worms.” Almost
200 years later, in 2004, Geim and Novosolov
showed that thin transparent adhesive tape could
be used to exfoliate graphite into single atomic
layers of graphene and demonstrated atomical-
ly thin devices (1). As a process, exfoliation of
layered solids has had a transformative effect
on materials science and technology by opening
up properties found in the two-dimensional (2D)
exfoliated forms, not necessarily seen in their bulk
counterparts.

Layered materials are defined as solids with
strong in-plane chemical bonds but weak out-of-
plane, van der Waals bonds. Such materials can
be sheared parallel or expanded normal to the
in-plane direction. In the extreme limit, these
processes yield nanometer-thin—even atomically
thin—sheets that are not at all characteristic of
the bulk precursor. This production of extremely
thin sheets from layered precursors is known
as exfoliation or delamination, although in this
work we will use the former term. The sheets
produced are generally referred to as nanosheets,
where “nano” refers to the magnitude of the thick-
ness. Although in the ideal case such nanosheets
consist of single monolayers, they are often man-

ifested as incompletely exfoliated flakes compris-
ing a small number (<10) of stacked monolayers.

There aremany types of layeredmaterials,which
can be grouped into diverse families (Fig. 1).
The simplest are the atomically thin, hexagonal
sheets of graphene (1–3) and hexagonal boron
nitride (h-BN) (4). Transition metal dichalco-
genides (TMDs) (such asMoS2 andWSe2) (5, 6)
and metal halides (such as PbI2 and MgBr2)
(7) have near-identical structures and consist of
a plane of metal atoms sandwiched between
planes of halide/chalcogen atoms. Layered me-
tal oxides (such as MnO2, MoO3, and LaNb2O7)
(8–11) and layered double hydroxides (LDHs)
[such as Mg6Al2(OH)16] (8, 12) represent a di-
verse class of materials with a large variety of
structures. Similarly, layered silicates, or clays,
are minerals and exist as many different types,
with well-known examples being montmorillonite
or the micas (13, 14). Generally, oxides, LDH,
and clay nanosheets are charged and are accom-
panied by charge-balancing ions (8, 14). Other
interesting families are the layered III-VIs (such
as InSe and GaS) (15), the layered V-VIs (such as
Bi2Te3 and Sb2Se3) (16), themetal trichalcogenides,
and metal trihalides. Although many other lay-
ered materials exist (Table 1), all share a planar,
anisotropic bonding and therefore the potential
to be exfoliated into nanosheets.

One substantial advantage of layered materi-
als is their diversity. Even before exfoliation, the
many families of layered materials display a very
broad spectrum of properties. For example, TMDs
(5, 6) occur as more than 40 different types de-
pending on the combination of chalcogen (S, Se,
or Te) and transition metal (5, 6). Depending on
the coordination and oxidation state of the metal
atoms, or doping of the lattice, TMDs can be me-
tallic, semimetallic, or semiconducting (6). In ad-
dition, these materials display interesting electronic
behavior, such as superconductivity or charge-
density wave effects (6). Similarly, the many dif-
ferent types of layeredmetal oxides have interesting

electronic, electrochemical, and photonic proper-
ties (8). These materials have been fabricated into
transistors, battery electrodes, and magneto-optic
devices (8–10). Thus, even as bulk crystals, lay-
ered materials are an interesting and potentially
useful material class. This makes them an exciting
starting material for exfoliation into nanosheets.
As we will see below, exfoliation dramatically
enhances the range of properties displayed by an
already diverse material type.

Why Exfoliate?
The simplest effect of exfoliation is to dramati-
cally increase the accessible surface area of a
material. For surface-active or catalytic materials,
this can radically enhance their chemical and
physical reactivity. The ion exchange ability of
minerals such as vermiculite to purify water at
1000 meq/kg depends on its near 106-fold increase
in surface area after expansion (13). In structural
mechanics, the strength and stiffness of composites
increase as the thickness of planar fillers, such as
clay or graphite, decreases (17). When heat causes
exfoliation, a layered material can be used as an
intumescent (or thermally expansive) material.
Hence, vermiculite and graphite are used for fire
retardation in paints and firestop pillows be-
cause they reduce their density upon heating and
produce an ash of low thermal conductivity.

As interest in nanotechnology has intensi-
fied in recent decades, another important advan-
tage of exfoliation has emerged. In a layered
crystal, the electronic wave function extends
in three dimensions. However, after exfoliation
electrons are constrained to adopt a 2D wave
function, thus modifying the electronic band
structure. Graphite can be transformed into a
graphene monolayer after exfoliation, with elec-
tronic properties that differ greatly from any other
material (1). These include an enormously high
carrier mobility and other exciting properties,
such as Klein tunnelling and the half-integer quan-
tum Hall effect (1, 3). Likewise, the properties
of MoS2 depend strongly on exfoliation state.
The bandgap of MoS2 changes on exfoliation
from 1.3 eV for the bulk crystal to 1.9 eV for
an exfoliated nanosheet. Because the bandgap
changes monotonically with number of mono-
layers per nanosheet, this allows the electronic
response to be chosen at will (18). In addition,
although multilayer MoS2 is not photolumines-
cent, exfoliation-induced changes in its electron-
ic structure lead to photoluminescent behavior
in exfoliated monolayers (19). Similar behavior
is expected in other layered semiconductors (5).

Large-Scale Exfoliation in Liquids?
The exfoliation of graphite demonstrated by Geim
andNovolosovwas achieved essentially by rubbing
graphite on a surface (1). Such mechanical ex-
foliation remains the source of the highest-quality
graphene samples available and has resulted
in some major advances (1). However, it suffers
from low yield and a production rate that is not
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technologically scalable in its current form.
One possible solution is the exfoliation of lay-
ered compounds in liquids to give large quan-
tities of dispersed nanosheets. This should allow
for methods to obtain sizable quantities of 2D
materials that can be processed by using exist-
ing industrial techniques, such as reel-to-reel
manufacturing. Here, we briefly outline the four
main liquid exfoliation techniques for layered
materials (schematics are provided in Fig. 2,
and examples of exfoliated nanosheets are pro-
vided in Fig. 3).

One of the oldest methods of exfoliating lay-
ered crystals with low reductive potential is oxi-
dation and subsequent dispersion into suitable
solvents. The best example is that of graphite (20),
inwhich treatment with oxidizers such as sulphuric
acid and potassium permanganate results in ad-
dition of hydroxyl and epoxide groups to the

basal plane. The resulting hydrophillicity allows
water intercalation and large-scale exfoliation to
yield graphene oxide upon ultrasonication. The
dispersed flakes are predominantly monolayers,
typically hundreds of nanometers across, and sta-
bilized against reaggregation by a negative sur-
face charge at concentrations of up to 1 mg/ml.
Dispersed graphene oxide can be chemically re-
duced in the liquid phase but will then aggregate
unless surfactant or polymer stabilizers are present.
Although reduction removes most of the oxides,
structural defects remain, rendering the properties
of oxidatively produced graphene substantially
different from pristine graphene.

Layered materials can also strongly adsorb
guest molecules into the spacing between lay-
ers, creatingwhat are called inclusion complexes.
This forms the basis of another exfoliation meth-
od that is widely applied to layered materials,

including graphite (21) and TMDs (22, 23).
Intercalation, often of ionic species, increases
the layer spacing, weakening the interlayer ad-
hesion and reducing the energy barrier to exfolia-
tion. Intercalants such as n-butyllithium (22, 23)
or IBr (21) can transfer charge to the layers, re-
sulting in a further reduction of interlayer bind-
ing. Subsequent treatment such as thermal shock
(21) or ultrasonication (22, 23) in a liquid com-
pletes the exfoliation process. The exfoliated
nanosheets can be stabilized electrostatically by a
surface charge (23) or by surfactant addition (21).
In the case of MoS2, this method tends to give
highly exfoliated nanosheets (22). However, ion
intercalation–based methods have drawbacks
associated with their sensitivity to ambient condi-
tions (22–24).

Ion exchange methods take advantage of
the fact that LDHs, clays, and some metal oxides

Fig. 1. Crystalstructures,natural-
ly occurring forms, and exfoliated
products for four example layered
materials. (A) Graphite consists of
alternating stacks of hexagonally ar-
ranged carbon atoms (black spheres),
(B) is a naturally occurring mineral, and
(C) exfoliates to single atomic layers of
carbon called graphene. (D) Vermicu-
lite is a layered silicate hydrate (typ-
ically Mg1.8Fe0.9Al4.3SiO10(OH)2•4(H2O)
that (E) is found naturally as a min-
eral and (F) can be exfoliated, for
example, upon heating. Silicon atoms
are in blue, oxygen atoms are in red,
Al/Mg/Fe atoms are in yellow, and
interlayer counterions are in black
(H and H2O not shown). (G) MoS2
is a layered arrangement of S and
Mo atoms (chalcogen atoms are in
yellow, and transition metal are in
green) that (H) is found naturally as
the mineral molybdenite and (I) can
be exfoliated to MoS2 monolayers.
(J) Layered manganese dioxide (man-
ganese atoms are in yellow, oxygen
is in red, and interlayer counterions
are in black) occurs naturally (K) as
birnessite and (L) can be exfoliated
to give MnO2 nanosheets. (C), (I),
and (L) are adapted from (48), (87),
and (58), respectively. The layer spac-
ings for each material are graphite,
0.35 nm; vermiculite, 1.5 nm; MoS2,
0.6 nm; and MnO2, 0.45 nm.
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Table 1. Referenced table of families of layered compounds, including structures and information on exfoliation methods, potential
applications, and availablility. This table is not exhaustive. Crystal structures were obtained from the CrystalMaker Library (www.crystalmaker.com/
library/index.html).

 Graphite

Top view

Side view

 Family of layered compound Structure  Exfoliation method Applications Commercial availability

Sonication in surfactant 

solution (30, 50–53)

Sonication in solvents 

(27, 45–48)

Sonication in polymer 

solutions (54, 55)

Graphene oxide (20,88)

Many (1, 89) Widely available

MoS
2
top view

MoS
2
 side view

Single-layer

transistor (92)

Batteries (63, 64)

Top-gate

phototransistors (93)

Thermo-electrics 

(29, 58)

Superconducting 

composites (94)

Raw materials 

mostly available 

(purity issues)

 h-BN

Top view

Nitrogen

Boron

Side view

Sonication in surfactant 

solution (58)

Sonication in solvents 

(29, 56)

Sonication in polymer 

solutions (54)

Sonication in surfactant 

solution (58)

Sonication in solvents 

(29, 59, 60)

Sonication in polymer 

solutions (54)

Ion intercalation (91)

Composites (57)

Device substrates (90)

Yes

Transition metal

Chalcogen

Transition metal

dichalcogenides

(TMDs)
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TiTe
3
top view

MnPS
3
top view

TiTe
3
side view

MnPS
3
 side view

Batteries (96) No, only by

synthesis

Ion intercalation (95)

Wide band-gap 

semiconductors (97)

Magnetic properties 

(98)

No, only by 

synthesis

Intercalation (75)

Transition metal

Chalcogen

Transition metal

Chalcogen

Phosphorus

Transition metal

trichalcogenides

(TMDs)

AMo
3
X

3
, NbX

3
, TiX

3
, and TaX

3
 (X = S, Se, or Te)

Metal phosphorous trichalcogenides (MPX
3
), 

such as MnPS
3
, CdPS

3
, NiPS

3
, ZnPS

3
, and 

Mn
0.5

Fe
0.5

PS
3
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MoCl
2
 top view

CrCl
3
top view

PbCl
4
 top view

MoCl
2
 side view

CrCl
3
 side view

PbCl
4
 side view

No (synthesis 

required)

No (synthesis 

required)

No (synthesis 

required)

Ion intercalation (7)

Polymer intercalation 

(99)

Ion intercalation (100)

Polymer intercalation 

(99)

Ion intercalation (101)

Transition metal

Halide

Transition metal

Halide

Heavy metal

Halide

Ammonium

Metal halides

Transition-metal dihalides*

Metal MX
3
 halides, such as αRuCl

3
, CrCl

3
, 

and BiI
3
†

Layer-type halides with 

composition MX
4
, MX

5
, MX

6
‡

MoCl
2
 top

MoCl
2
 side view

CrCl
3
top view

Halide

4
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Na
x
(Mn4+,Mn3+)

2
O

4

(birnessite) top view

Na
x
(Mn4+,Mn3+)

2
O

4
 

(birnessite) side view

Vanadium oxide

(V
2
O

5
) top view

V
2
O

5
 side view

Some raw materials 

available (purity 

issues)

Most compounds are 

not available

Supercapacitors (106)

Batteries (107)

Catalysts (108)

Dielectrics (109)

Ferroelectrics (109)

Ti oxides
Ion intercalation (102)

Mn oxides
Sonication in surfactant 

solution (58); Ion 

intercalation (103)

Nb oxides
Ion intercalation (104)

Va oxides
Polymer intercalation 

(105)

Transition metal

Oxygen

Caton

Vanadium

Oxygen

Oxides
Transition metal oxides : Ti oxides, Ti

0.91
O

2
, 

Ti
0.87

O
2
, Ti

3
O

7
, Ti

4
O

9
, Ti

5
O

11
; Nb oxides,

Nb
3
O

8
, Nb

6
O

17
, HNb

3
O

8
;§ Mn oxides, MnO

2
, 

Ti
3
O

7
, Na

x
(Mn4+,Mn3+)

2
O

4
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MoO
3
top view

MoO
3
 side view

Sr
2
RuO

4
 top view

Sr
2
RuO

4
 side view

Yes

No (only by 

synthesis)

No (only by 

synthesis)

Ion intercalation (110)

Polymer intercalation 

(111)

Intercalation with 

liquid crystals (115)

Ion intercalation 

(protonation and ion 

exchange) (116)

Amine surfactant (TBA+) 

under sonication (117)

 Ion intercalation 

(protonation and ion 

exchange) (114)

Electrochromics (112)

Light emitting diodes 

(113)

Ferroelectrics (118)

Photochromic (119)

Photoluminescent (120)

Layered trirutile phases 

HMWO (M = Nb, Ta), such as

(HNbWO
6
 and HTaWO

6
)

Hydrogen Oxygen Transition metal 

Strontium Ruthenium Oxygen

Oxides

Trioxides, such as MoO
3
, TaO

3
, 

and hydrated WO
3

Perovskites and niobates, such as 

Sr
2
RuO

4
KCa

2
Nb

3
O

10
, H

2
W

2
O

7
, LaNb

2
O

7
, 

La
0.90

Eu
0.05

Nb
2
O

7
, Eu

0.56
Ta

2
O

7
, Sr

2
RuO

4
, 

Sr
3
Ru

2
O

7
, SrTa

2
O

7
, Bi

2
SrTa

2
O

9
, Ca

2
Nb

3
O

10
, 

Sr
2
Nb

3
O

10
, NaCaTa

3
O

10
, CaLaNb

2
TiO

10
, 

La
2
Ti

2
NbO

10
, and Ba

5
Ta

4
O

15
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Ti
2
Sb

2
O top view

Ti
2
Sb

2
O side view

FeOCl top view

FeOCl side view

No (only by 

synthesis)

No (only by 

synthesis)

To our knowledge, 

these have never 

been exfoliated

Ion intercalation (122)

Superconductivity (121)

Magnetic properties 

(121)

Catalyst (redox 

properties) (121)

Batteries (121)

Batteries (123)

Transition metal

Pnictide

Cation 

Transition metal

Halide

Oxygen

Oxides
Oxychalcogenides and oxypnictides: 

Oxychalcogenides, LaOCuCh 

(Ch, chalcogenide) and derivatives, 

Sr
2
MO

2
Cu

2-δ
S

2
 (M = Mn, Co, Ni), 

Sr
2
MnO

2
Cu

2m-0.5
S

m+1
 (m = 1-3), Sr

4
Mn

3
O

7.5

Cu
2
Ch

2
 (Ch=S, Se); oxypnictides, LaOFeAs II

Oxyhalides of transition metals, such as 
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O) side view
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synthesis
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in solvents (138)
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Carbon

Titanium

Oxygen HydrogenCation

Layered double 
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(OH)
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2
O, 

where M(II) = divalent cation; M(III) = 

trivalent cation; A = interlayer anion; 

and n– = charge on interlayer anion‡‡

Derivatives from MAX phases, where 

M = transition metal; A = Al or Si;

and X=C or N§§

Oxygen

Hydrogen

*These are iso-structural with TMDs. †These are defect CdI2 structure types. ‡These are heavy metal halides (perovskite type) structurally similar to transition metal dihalides with
organic ammonium interlayers. §Protons emplaced between 2D of Nb3O8

– anion nanosheets composed of NbO6 octahedra. ‖They contain oxide layers separated by distinct layers,
which contain the softer chalcogenide (S, Se, and Te) or pnictide (P, As, Sb, and Bi). ¶The building block has a trigonal structure, consisting of a pair of (M3X3) rings linked by M–M bonds.
Layers interact through van der Waals forces between the X outermost planes. #R is an organic radical, and n is the number of water molecules that can be intercalated in the interlayer
region. **The 2:1 notation means that the layers consist of two tetrahedral silicate sheets sandwiching one octahedral sheet. ††Layer consists of one tetrahedral silicate sheets and one
octahedral sheet. ‡‡The structure of LDHs can be described by considering Mg(OH)2, which consists of Mg2+ ions coordinated octahedrally by hydroxyl groups. The octahedral units share
edges to form infinite, charge neutral layers. In an LDH, isomorphous replacement of a fraction of the Mg2+ ions with a trivalent cation, such as Al3+, occurs and generates a positive charge on
the layers that necessitates the presence of interlayer, charge-balancing, anions. The remaining free space of the interlayer is occupied by water of crystallization. §§Layered M2X, M3X2,
M4X3, where M = transition metal and X = C or N, can be obtained after removal of the A layer with hydrofluoric acid (HF).
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contain an exchangeable interlayer of cationic
counterions (8). For example, titanium dioxide
(TiO2) layered crystals tend to be negatively
charged (because of the presence of both Ti3+ and
Ti4+ ions) and so contain counter-ions such as
Cs+ between the layers to ensure charge neutrality
(8, 25). Such ions can be exchanged for protons
by soaking in acidic solutions. The protons can
then be exchanged for bulky organic ions (for ex-
ample, tetrabutylammonium cations), leading to
substantial swelling. Alternatively, some clays
containing small monovalent ions such as so-
dium swell from intercalation of water (13). In
general, swelling facilitates exfoliation through
ultrasonication or shear mixing to give nega-
tively charged nanosheets (26).

A more recent strategy for exfoliation is to
expose the layered material to ultrasonic waves
in a solvent (27). Such waves generate cavitation
bubbles that collapse into high-energy jets, break-
ing up the layered crystallites and producing ex-
foliated nanosheets. Modeling has shown that if
the surface energy of the solvent is similar to that
of the layered material, the energy difference be-
tween the exfoliated and reaggregated states will
be very small, removing the driving force for re-
aggregation (28). Graphene, h-BN,TMDs, and some
TMOs have been exfoliated in this way by using
solvents such as N-methyl-pyrrolidone (28, 29).
Similarly, ultrasonication in surfactant or polymer

solutions gives nanosheets that are electrostatically
or sterically stabilized (17, 30).

Pioneers
The exfoliation of layered compounds is an area of
research that dates back several centuries. Mod-
ern research probably began with Webb and pro-
gressed via thework of chemists such as Schafhaeutl,
Brodie, and Staudenmaier on the production of
graphite intercalation compounds and graphite
oxide in the mid-19th century (20). Although these
early researchers knew of the laminar nature of
graphite, the detailed structure was not known
until the 1920s (28). Early attempts to understand
exfoliated layered compounds used transmission
electron microscopy (TEM) to image few- and pos-
sibly even mono-layer exfoliated graphene oxide as
early as 1948.However, the limitations of available
instrumentationmade it impossible to verifywhether
monolayers were really observed (20, 31). The
1960s saw a flurry of activity on the cleavage (often
using adhesive tape) of TMD crystals to produce
nanosheets that approached monolayer thickness
(32). This was complemented in 1967 by the dem-
onstration that inorganic layered compounds—in
this case, vermiculite clay—could be exfoliated in
liquids by means of ion intercalation followed by
shear mixing (26). In 1975, a similar technique was
used to exfoliate TaS2, possibly producingmono-
layers (33). Subsequently, the availability of cheap

ultrasonic agitators provided a more effective
energy source for exfoliation, leading to the dem-
onstration of ion intercalation–assisted exfolia-
tion of TaS2, NbS2, and MoS2, as well as layered
oxides (23, 34, 35). In these reports, TEM and
x-ray diffraction suggested that monolayers had
been produced. A decade later in 2000, the ex-
foliation of layered double hydroxides by means
of ion exchange followed by stirring or reflux
was demonstrated (36).

Much of this work has historically been lim-
ited by the instrumentation available. Early TEM
characterization used techniques such as inten-
sity analysis (34) or shadowing (32), which would
not meet today’s standards of proof for imaging a
single layer. However, the development of scanning
tunnelling microscopy (STM) and atomic force
microscopy (AFM) in the 1980s and recent ad-
vances in scanning TEM have changed this en-
tirely. By the time Geim et al. produced nanosheets
through mechanical exfoliation (1), a new genera-
tion of scientific instrumentation with atomic-scale
resolution had emerged in order to fully analyze
exfoliated materials with unprecedented precision.
The result has been a renewed surge in interest in
these exotic, molecular-scale materials.

Recent Advances in Liquid Exfoliation
Although the exfoliation of layered materials
has a long history, it was interest in graphene that

Fig. 2. Schematic description of themain liquid exfoliationmechanisms.
(A) Ion intercalation. Ions (yellow spheres) are intercalated between the
layers in a liquid environment, swelling the crystal and weakening the in-
terlayer attraction. Then, agitation (such as shear, ultrasonication, or thermal)
can completely separate the layers, resulting in an exfoliated dispersion. (B)
Ion exchange. Some layered compounds contain ions between the layers so
as to balance surface charge on the layers. These ions (red spheres) can be
exchanged in a liquid environment for other, often larger ions (yellow

spheres). As above, agitation results in an exfoliated dispersion. (C) Sonication-
assisted exfoliation. The layered crystal is sonicated in a solvent, resulting
in exfoliation and nanosheet formation. In “good” solvents—those with ap-
propriate surface energy—the exfoliated nanosheets are stabilized against
reaggregation. Otherwise, for “bad” solvents reaggregation and sedimenta-
tion will occur. This mechanism also describes the dispersion of graphene
oxide in polar solvents, such as water. NB, solvent molecules are not shown
in this figure.
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stimulated renewed curiosity in this area. For this
reason, we outline the recent developments in the
liquid exfoliation of layered crystals, using Geim
and Novoselov’s 2004 paper describing the prop-
erties of exfoliated graphene as a starting point.

In a series of papers beginning in 2004
(1, 3, 37, 38), Geim, Novoselov, and collaborators
showed that monolayers of graphene and other
2D materials could be removed from their parent
crystals by means of mechanical exfoliation and
placed on substrates of choice. This was some-

what surprising because theoretical studies had
suggested that 2D materials should be intrinsi-
cally unstable after exfoliation (2). This apparent
contradiction was later resolved with the sugges-
tion that the exfoliated monolayers are stabilized
by the formation of ripples that effectively extend
the 2D material into the third dimension (39).
However, the most exciting result of exfoliation
was the demonstration that graphene displayed
electronic, mechanical, and thermal properties
not seen in any other material. For example, in

addition to the previously undiscovered electron-
ic properties described above, monolayer graphene
displays the highest strength and the highest ther-
mal conductivity ever recorded (1–3). Very soon,
it became clear that such a material would be
required inmuch larger quantities thanmechanical
cleavage could deliver. It was immediately
obvious that such scalable production might be
achieved through liquid exfoliation (40).

One of the first approaches to liquid exfolia-
tion was the oxidization of graphite. In 2006,
Ruoff et al. demonstrated platelets of graphite
oxide withmonolayer thickness (20). Now known
as graphene oxide (GO), this material is electri-
cally insulating, although it can be rendered con-
ducting via reduction (20). The oxidation allows
one to control the amount and type of attached
oxides, potentially enabling control of electrical
conductivity and luminescence (41). A disadvan-
tage of this method is that it necessarily introduces
chemical groups and defects that scatter electrons,
giving relatively high resistivity. Graphene oxide
exfoliation has been the subject of many papers
and reviews (20).

Around the time of Geim’s seminal paper,
McEwan et al. produced good-quality nano-
graphite by sonicating graphite in the solvent di-
chlorobenzene (42).However,monolayer graphene
was not observed in this work. It was not until
4 years later that liquid-exfoliated monolayer
graphene was produced by ultrasonicating graph-
ite in solvents such as N-methyl pyrrolidone
and di-methyl formamide (27, 43). It was found
that exfoliation was only achieved by using sol-
vents with surface tension close to 40 mJ/m2.
Theoretical modeling showed that for such sol-
vents, the solvent-graphene interaction is opti-
mized so that the energetic cost of exfoliation
was minimized (27, 44, 45). This method resulted
in low-concentration dispersions of small but
high-quality, defect-free graphene flakes. Recent
improvements have substantially enhanced both
the dispersed concentration (up to 30 mg/ml), the
nanosheet size (up to 5 mm), and the range of
solvents (28, 45–48). This method is promising
for applications inwhich good electrical perform-
ance is required. For example, solvent-exfoliated
graphene has been used to prepare transparent
electrodes for liquid crystal devices (43). Recent
results on printed electronic circuits have yielded
mobility values of ~100 cm2/Vs (49), which are
some of the highest for any chemically exfo-
liated graphenes. In addition, liquid exfoliation
of graphene with minimal lattice defects allows
the effective reinforcement of polymers (17).

Unfortunately, the most useful solvent of all,
water, has a surface tension of 72 mJ/m2 and so
cannot by itself exfoliate graphene. However,
if graphite is ultrasonicated in aqueous surfac-
tant solutions, graphene can be exfoliated and
stabilized against reaggregation through electro-
static effects (30, 50–53). Similarly, when ultra-
sonicated in polymer solutions, by using both
water and organic solvents, graphene can be
exfoliated and stabilized through steric effects

Fig. 3. TEM images of liquid exfoliated nanosheets. (A) A graphene nanosheet exfoliated by means
of sonication in the solvent N-methyl-pyrrolidone (27). (B) A h-BN nanosheet exfoliated by means of
sonication in the solvent isopropanol (29). (C) An MoS2 nanosheet exfoliated by means of sonication in an
aqueous surfactant solution (58). (D) An MoS2 nanosheet exfoliated by means of Li ion intercalation (22).
(E) A TiO2 nanosheet exfoliated by means of ion exchange (25). (F) Functionalized layered double
hydroxide nanosheets exfoliated by means of sonication in ethanol (65). (G) Hydroxylated metal carbide
nanosheets exfoliated by means of sonication in methanol (66). Where available, high-resolution images
have been included as insets. All images were adapted from the sources as referenced.

www.sciencemag.org SCIENCE VOL 340 21 JUNE 2013 1226419-13

REVIEW

 o
n 

Ju
ne

 2
4,

 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


(17, 54, 55). The latter method is particularly
useful as a method for producing polymer-
nanosheet composites (17).

Similar methods have recently been used to
exfoliate both h-BN (4, 29, 56, 57) and a range of
TMDs in both solvents and surfactant or polymer
solutions (29, 54, 58–61). Dispersions of TMDs
such as MoS2, WS2, MoSe2, MoTe2, TaSe2, and
NbSe2 (58) were obtained at concentrations as
high as 40 mg/ml (61). As with graphene, disper-
sion works for solvents or solvent blends (62)
with surface energies that minimize the energetic
cost of exfoliation (29). TMDs prepared with this
scalable method have attracted interest as com-
posite fillers (63) and for energy storage (64). For
example, Smith et al. have demonstrated solution-
processed MoS2/nanotube composite cathodes
for Li ion batteries with reversible capacities of
>200 mA h g−1 (58). Chemical pretreatment also
facilitates exfoliation by means of sonication in
solvents. For example, functionalization allows the
exfoliation of LDHs in alcohols (65). Similarly,
acid treatment of metal aluminum carbides/nitrides
produces theMXenes—metal carbide nanosheets
with fluorinated or hydroxylated surfaces—that
can be exfoliated in methanol (66, 67).

A number of advances have been made in
the exfoliation of layered materials via ion inter-
calation. Strano et al. have demonstrated that
dispersions of predominately bi- and tri-layer
graphene can be produced from graphite inter-
calation compounds by thermal expansion fol-
lowed by sonication in surfactant solution (21).
Eda et al. have used ion intercalation to exfo-
liate MoS2 (22), obtaining photoluminescent
monolayers. Recently, Zeng et al. demonstrated
electrochemical Li insertion followed by exfo-
liation for MoS2, WS2, TiS2, TaS2, ZrS2, and
graphite (68). The resultant nanosheets were
fabricated into transistors and sensors. Recently,
Xiao et al. (63) reported using exfoliated MoS2
to prepare MoS2/polyethylene oxide nanocom-
posites as battery electrodes with greatly im-
proved lithiation capacity and cycling behavior.
Du et al. (69) prepared MoS2 anode electrodes
by means of an exfoliation and restacking pro-
cess, improving stability and achieving capacities
as high as 800mA h g−1. Additionally, exfoliation
by means of ion intercalation has been demon-
strated for V-VI layered compounds such as
Bi2Te3 and Bi2Se3 (70).

Of particular interest are layered metal oxides
owing to their interesting electronic and dielectric
properties (9, 10). Because of these properties,
their exfoliation has been studied since at least
1990 (35) and mainly involves ion exchange fol-
lowed by agitation (9). Exfoliated oxide nanosheets
are most often wide-bandgap semiconductors,
making them promising for applications such as
photocatalysts or high-dielectric constant mate-
rials (8, 10). Alternatively, exfoliated MnO2 and
RuO2 nanosheets are either redox-active or semi-
metallic (8, 10) and have demonstrated high per-
formance as electrochemical supercapacitors and
battery materials (8, 10). Furthermore, the availa-

bility of 2D semiconducting nanosheets opens up
possibilities for designing more complex nano-
devices, such as photoconducting cells, p-n junc-
tions, and field-effect transistors (FETs) (8, 9).
Colloidal dispersions of exfoliated Cs4W11O36

2–

nanosheets are photochromic and superior to
commonly usedmaterials such asWO3 (8).MnO2

has also been exfoliated by means of ultrasonica-
tion in aqueous surfactant solutions (58), suggest-
ing that this facile route can be applied to other
layered oxides.

Intercalated layered double hydroxideswere first
successfully delaminated by Adachi-Pagano et al.
by exchanging the interlayer anions with dodecyl-
sulfate under reflux in butanol (71). Recent studies
have focused on exfoliating such ion-exchanged
materials in solvents such as fomamide (71) and
water (72). High-concentration (~40 g/L) dis-
persions of mono- and few-layer LDHs were re-
ported byWu et al. (73). Liquid exfoliated LDHs
have found applications in areas as diverse as
drug delivery and water treatment (8).

Although liquid exfoliation of clay minerals
such as montmorillonite or vermiculites is rea-
sonably well known, recent work has focused on
dispersing clay nanosheets in hydrophobic poly-
mers for composite applications. This has been
achieved by exchanging the charge-balancing ions
with organocations so as to form organoclays (74).

It has recently been shown that other layered
chalcogenides such as metal phosphorous tri-
chalcogenides (CdPS3 and MnPS3, for example)
can also be exfoliated into single layers by means
of ion exchange (75). Details of exfoliation strat-
egies for a wide range of layered materials are
given in Table 1.

Potential Applications of
Liquid-Exfoliated Nanosheets
Liquid exfoliation represents a versatile, scalable,
and sustainable route for production of 2D nano-
sheets. In addition, access to suspensions of nano-
sheets permits processing in ways that would
otherwise be difficult or impossible. For example,
processing from liquids allows the deposition of
individual nanosheets on surfaces and the for-
mation of thin or free-standing films; facilitates
mixing with other nanomaterials to form hetero-
structured solids; and enables insertion, as fillers,
into polymer matrices (Fig. 4).

The ability to invoke different phases of
2D materials via tuning the exfoliation chemistry
opens up an exciting range of possibilities. For
example, exfoliation via electrochemical ion in-
tercalation leads to realization of themetallic (1T)
phase in layered transition metal chalcogenides,
which cannot be accessed through other synthesis
techniques (76). Some applications include elec-
trodes for energy-storage devices, high-performance
fillers for polymer-based composites, electro- and
photocatalysis for hydrogen evolution, nano- and
large-area electronics and opto-electronics, and low-
friction additives in lubrication systems.

The production of inexpensive 2D nanosheets
holds promise for multifunctional polymer com-

posites. Polymer-clay composites can display im-
proved mechanical and barrier properties, usually
at loading levels from a few percent to a few
tens of percent (77). Because of the potentially
high aspect ratio of exfoliated graphene, poly-
mers loaded with graphene display reinforce-
ment (17), conductivity enhancement (78), and
barrier properties (79) at loading fractions below
1 volume %. Solvent processing of 2D nanosheets
makes composite fabrication straightforward
and will extend the suite of 2D fillers beyond
clays and graphene (4, 29, 80). Liquid exfoliation
also allows the formation of unusual composites
consisting of mixtures of nanosheets, nanotubes,
and other nanostructures (Fig. 4) (29, 58). This
results in synergetic effects; for example, compos-
ites of WS2 and carbon nanotubes display very
high conductivity but retain much of the charac-
ter of WS2 films (29, 58, 81). Such composites
are promising for applications in photovoltaic
or thermoelectric devices and as electrodes for
supercapacitors or batteries.

Supercapacitor electrodes formed from chem-
ically exfoliated graphene nanosheets have yielded
energy densities of 20 W h kg−1 for packaged
devices, approaching those of lead-acid batteries
(82). Recent results on restacked nanosheet films
indicate that they maintain their structural integ-
rity upon intercalation and deintercalation (58).
The wide range of 2D materials available with
varying electrochemical properties makes them
ideal for energy storage. Initial measurements
indicate that their capacitive capability is very
high, although issues relating to substantial loss
after the first few cycles remain. Choosing the
correct combinations of materials will allow
multiple properties (such as surface area, con-
ductivity, and electrochemical stability) to be
simultaneously improved so as to provide flex-
ibility for designing electrodes for batteries and
supercapacitors. For example, materials such as
VS2, MoO3, and MnO2 could be useful for effi-
cient energy storage.

The possibility that layered materials could
catalyze the production of hydrogen from water,
for use as a fuel, is a critically important appli-
cation. The edge molybdenum sites on TMDs are
highly active for hydrogen evolution reactions and
thus are being considered as electrodes for water-
splitting by using sunlight. With ion-exfoliated
2D TMDs, the presence of a metallic (1T) phase
makes the entire basal plane catalytically active,
leading to an improvement in the catalytic activity
and a substantial increase in the number of active
catalytic sites (83). Oxide nanosheets (such as
TiO2 andMoO3) are also candidates for hydrogen
evolution catalysts (84).

Liquid-phase exfoliation facilitates the inte-
gration of the materials into large-area electronics
through the well-known solution-based techniques
such as inkjet printing (49) and roll-to-roll coat-
ing. Recent results have indicated that the elec-
tronic structure of the 2D nanosheets is largely
preserved after liquid exfoliation so that fun-
damental processes can be observed in individual
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sheets. For example, because exfoliated oxides
retain their excellent dielectric properties, they
can be used as high-K dielectrics in nanoelec-
tronics (10). Alternatively, stacking of different
layered perovskites allows the fabrication of
artificial multi-ferroic materials for use in future
oxide-based electronics and memory devices.
Exfoliated oxide nanosheets may also be used
in more complex nanodevices, such as photo-
conducting cells, p-n junctions, and field-effect
transistors (8, 10). Alternatively, MoS2 shows
exceptionally stable transistor operation under
very large mechanical deformation (85). The rel-
atively undisturbed electronic structure coupled

with flexibility makes MoS2 and other 2D ma-
terials useful for next-generation large-area elec-
tronics and opto-electronics on plastic and paper
platforms. In particular, large-area, solution-cast,
TMD thin-film transistors withmobility of ~10 to
50 cm2/V s could replace doped oxide semicon-
ductors for back-plane switching in flexible and
transparent displays.

More exotic applications of layered 2D ma-
terials will arise from the stacking and seamless
integration of specific combinations of materials
in order to access fundamental properties such as
superconductivity and condensates (86). The in-
tegration could be in the vertical or lateral direc-

tion so as to allow for different device concepts.
The ability to accessmetallic and semiconducting
phases in 2D materials with electrochemical ex-
foliation also provides opportunities for designing
molecular-scale heterostructures with atomically
coherent junctions (24). These types of super-
lattice structures could be easily synthesized from
liquid dispersions.

Outlook
Our ability to employ straightforward techniques
to exfoliate materials points to a productive fu-
ture in this area. However, a number of substantial
challenges remain. Although ultrasonication-
assisted solvent exfoliation displays great prom-
ise, it also has a number of limitations in its
current form. For example, the monolayer yield is
generally no more than a few tens of percent by
number, which is far too low for many applica-
tions. As such, it will be necessary to develop
methods to monitor and increase both the mono-
mer yield and indeed the lateral flake size. For
ion intercalation–based methods, the time re-
quired to achieve exfoliation must be reduced.
Crucially, the scale-up of liquid exfoliation must
be demonstrated. The ultimate aim must be pro-
duction on an industrial scale (more than kilo-
grams per day)—a goal that seems relatively far
off for defect-free materials. This will almost
certainly require exfoliation methods that do not
rely on ultrasonication, a method that has limited
scalability. However, an achievable early target
would be a production rate of grams of exfoliated
nanosheets per hour.

It will be important to demonstrate exfoliation
of a wider range of layered materials. To date,
liquid exfoliation has produced graphene, h-BN, a
number of TMDs, a range of clays, many oxides
and hydroxides, and a scattering of other exfo-
liated nanosheets. However, there is a galaxy of
other materials (Table 1) offering a rich set of
distinct features that have not yet been exfoliated
but should be amenable to the methods described
above. For example, because layered GaSe and
InSe are photoluminescent, liquid exfoliation
could lead to next-generation solution-processed,
photostable light-emitting diodes. Alternatively,
V-VI layered compounds (such as Bi2Te3 and
Bi2Se3) could form the basis of solution-processed
thermoelectric materials (29, 58).

In addition, exfoliation in liquids will be a
good starting point for subsequent chemicalmod-
ification of nanosheets. For example, chemical
functionalization will allow controlled modifica-
tion of the properties of exfoliated nanosheets for
applications in composites, targeted drug deliv-
ery, or sensing. It will be critical to develop the
chemistry required to attach a wide range of chem-
ical groups to both nanosheet basal plane and
edge in a controlled way.

Last, there are a number of cases in which
2D materials might be produced from starting
materials that differ considerably from the layered
crystals described above. Specifically, we con-
sider materials that lack a clearly defined van der

Fig. 4. Once layeredmaterials have been exfoliated in liquids, they canbe easily processed into
a range of structures. (A) TiO2 nanosheets deposited onto a substrate and imaged by means of AFM
(10). (B) Solution-processed, free-standing films of randomly arranged nanosheets of h-BN, MoS2, and
WS2 (29). Scale bar, 25 mm. (C) A composite film of WS2 nanosheets in a matrix of randomly arranged
carbon nanotubes (29). (D) Solvent-exfoliated graphene nanosheets (arrows) embedded in a polymer
matrix (17). All images were adapted from the sources as referenced.
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Waals gap. There are entire families of materials
that are made of extended layers carrying negative
or positive charges and are separated by charge-
balancing cations or anions, respectively. Such
systems will have just as interesting chemical
and physical properties as the neutral layered ana-
logs. Some examples include the semiconduct-
ing NaInSe2, K2Cd3S4, K2Fe4Se5, the metallic
KCu4S3, BaFe2As2, and the superconducting
KFe2As2. Instead of weak van der Waals forces,
much stronger electrostatic interactions hold these
layers together. In these cases, separation of the
layers will require the apportioning of the charge-
balancing ions between them to partition evenly
on both layers coming apart. This will create sur-
faces that need to be neutral. Therefore, innova-
tive chemical methods that can dismantle the
solid-state lattices and stabilize such surfaces will
be required. That such approaches are feasible is
evidenced by the chemical modification and sub-
sequent exfoliation of Ti3AlC2—a material with-
out a van der Waals gap—to give nanosheets of
Ti3C2F2 and Ti3C2(OH)2 (67).

As exfoliation methods increase in their so-
phistication and effectiveness, layered materials
will yield a host of new 2D systems to explore.
The diverse range of properties of known layered
crystals means that their exfoliated counterparts
will be equally diverse, leading to applications in
electronics, photonics, energy storage, structural
composites, drug delivery, barrier layers, and coat-
ings, to name but a few. We envisage exfoliated
nanosheets becoming central to nanotechnology
in the 21st century.
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